General Analysis of Type I Planetary Migration with Stochastic Perturbations
نویسندگان
چکیده
This paper presents a generalized treatment of Type I planetary migration in the presence of stochastic perturbations. In many planet-forming disks, the Type I migration mechanism, driven by asymmetric torques, acts on a short time scale and compromises planet formation. If the disk also supports MHD instabilities, however, the corresponding turbulent fluctuations produce additional stochastic torques that modify the steady inward migration scenario. This work studies the migration of planetary cores in the presence of stochastic fluctuations using complementary methods, including a Fokker-Planck approach and iterative maps. Stochastic torques have two main effects: [1] Through outward diffusion, a small fraction of the planetary cores can survive in the face of Type I inward migration. [2] For a given starting condition, the result of any particular realization of migration is uncertain, so that results must be described in terms of the distributions of outcomes. In addition to exploring different regimes of parameter space, this paper considers the effects of the outer disk boundary condition, varying initial conditions, and time-dependence of the torque parameters. For disks with finite radii, the fraction of surviving planets decreases exponentially with time. We find the survival fractions and decay rates for a range of disk models, and find the expected distribution of locations for surviving planets. For expected disk properties, the survival fraction lies in the range 0.01 < pS < 0.1. Subject headings: MHD — planetary systems — planetary systems: formation — planets and satellites: formation — turbulence
منابع مشابه
Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Unstratified Disks
The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations due to magnetorotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model has turbulent accret...
متن کاملType I Planetary Migration with MHD Turbulence
This paper examines how type I planet migration is affected by the presence of turbulent density fluctuations in the circumstellar disk. For type I migration, the planet does not clear a gap in the disk and its secular motion is driven by torques generated by the wakes it creates in the surrounding disk fluid. MHD turbulence creates additional density perturbations that gravitationally interact...
متن کاملThe Impact of International Migration on the Economy with the Assumption of Labor Heterogeneity
T his study investigated the effect of international labor migration on Iran’s economy using a neo-classical growth model with the assumption of labor heterogeneity within the framework of dynamic stochastic general equilibrium model. After solving the model, the obtained equations were linearized and different values were assigned to the parameters according to Iran’s economy inform...
متن کاملOn the Orbital Evolution of Low Mass Protoplanets in Turbulent, Magnetised Disks
We present the results of MHD simulations of low mass protoplanets interacting with turbulent, magnetised protostellar disks. We calculate the orbital evolution of ‘planetesimals’ and protoplanets with masses in the range 0 ≤ mp ≤ 30 M⊕. The disk models are cylindrical models with toroidal net-flux magnetic fields, having aspect ratio H/r = 0.07 and effective viscous stress parameter α ≃ 5× 10....
متن کاملType I Migration in a Non-isothermal Protoplanetary Disk
We calculate rates of Type I migration of protoplanets in a non-isothermal three-dimensional protoplanetary disk, building upon planet-disk models developed in previous work. We find that including the vertical thickness of the disk results in a decrease in the Type I migration rate by a factor of ∼ 2 from a two-dimensional disk. The vertical temperature variation has only a modest effect on mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009